Research on Maximum Power Control of Direct-Drive Wave Power Generation Device Based on BP Neural Network PID Method

Author:

Fan Xinyu1,Meng Hao1

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

Ocean wave energy is a new type of clean energy. To improve the power generation and wave energy conversion efficiency of the direct-drive wave power generation system, by addressing the issue of large output errors and poor system stability commonly associated with the currently used PID (proportional, integral, and derivative) control methods, this paper proposes a maximum power control method based on BP (back propagation) neural network PID control. Combined with Kalman filtering, this method not only achieves maximum power tracking but also reduces output ripple and tracking error, thereby enhancing the system’s control quality. This study uses a permanent magnet linear generator as the power generation device, establishes a system dynamics model, and predicts the main frequency of irregular waves through the Fast Fourier Transform method. It designs a desired current tracking curve that meets the maximum power strategy. On this basis, a comparative analysis of the control accuracy and stability of three control methods is conducted. The simulation results show that the BP neural network PID control method improves power generation and exhibits better accuracy and stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province, China

Publisher

MDPI AG

Reference25 articles.

1. Research progress and development trend of ocean wave energy;Shi;Sci. Technol. Rev.,2021

2. Research status and development prospect of wave energy generation technology;Liu;J. Mar. Technol.,2016

3. Numerical simulation of swing plate motion response of a floating wave energy generator;Qu;Ocean. Eng.,2013

4. Design and Research of Pendulum Power Generation Device for unmanned Underwater Vehicle;Fang;China Mech. Eng.,2018

5. Analysis of linear wave power generator model with real sea experimental results;Krishna;IET Renew. Power Gener.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3