Enhanced Resistance to Leaf Fall Disease Caused by Phytophthora palmivora in Rubber Tree Seedling by Sargassum polycystum Extract

Author:

Khompatara Khemmikar,Pettongkhao Sittiporn,Kuyyogsuy Arnannit,Deenamo Nuramalee,Churngchow Nunta

Abstract

The brown seaweed (Sargassum polycystum C. Agardh-Sargassaceae) extract was examined for its bioelicitor properties in the rubber tree seedling (Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg. - Euphorbiaceae) and its application to reduce the leaf fall disease caused by Phytophthora palmivora (Edwin John) Butler, 1917 (Peronosporaceae). The major purpose of this study was to apply this seaweed extract (SWE) to improve the disease resistance in rubber tree seedling compared to a chemical fungicide (1% metalaxyl). After foliar spraying of SWE solution, two antioxidant enzymes, catalase (CAT) and peroxidase (POD) and systemic acquired resistance (SAR)-triggered enzyme, β-1,3-glucanase (GLU), were analyzed. Both secondary metabolites, a phytoalexin scopoletin (Scp) and a signaling molecule salicylic acid (SA) were measured by high performance liquid chromatography (HPLC). Both SWE- and metalaxyl-treated plants had a close disease index (DI)-score which were 16.90 ± 1.93 and 15.54 ± 1.25, respectively, while the positive control sprayed with P. palmivora showed DI-score of 29.27 ± 1.89 which was much higher than those treated with SWE or fungicide. CAT, POD, and GLU were increased in rubber tree leaves treated with SWE solution. Furthermore, Scp and SA were significantly increased in SWE-treated leaves. Enhanced systemic acquired resistance induction, 2.09 folds of SA accumulation, was observed in the distal area comparing to the local area of SWE application. In conclusion, the positive effects of SWE elicitation from these studies revealed that SWE could be used as an alternative biocontrol agent for foliar spraying to enhance the defense responses in rubber tree seedling against P. palmivora.

Funder

The government budget of Prince of Songkla University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3