ConvLSTM Coupled Economics Indicators Quantitative Trading Decision Model

Author:

Qi YongORCID,Jiang HefeifeiORCID,Li ShaoxuanORCID,Cao Junyu

Abstract

Time series prediction methods based on deep learning have been widely used in quantitative trading. However, the price of virtual currency represented by Bitcoin has random fluctuation characteristics, which is extremely misleading for time series prediction. In this paper, a virtual currency quantitative trading model is established, which uses a convolution long short term memory (ConvLSTM) deep learning method to predict the transaction price, and uses the evaluation model composed of Chandler momentum oscillator (CMO), percentage price oscillator (PPO), stop and reverse(SAR) and other economic indicators to make further decisions. The model quantitatively classifies the random wandering characteristics by fusing economic indicators and extracts the symmetric economic laws among them, making full use of deep learning methods to extract spatial and temporal features within the data. The 2016–2021 Bitcoin value dataset published on Kaggle was used for simulated investment. The results show that compared with other existing decision models, it shows better performance and robustness, and shows good stability in dealing with the interdependence of long-term and short-term data. Our work provides a new idea for short-term prediction of long time series data affected by multiple complex factors: coupling deep learning methods with prior knowledge to complete prediction and decision making.

Funder

Shaanxi Provincial Education Department's Special Research Programme for Local Services

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3