Analysis of Heat Transfer of Mono and Hybrid Nanofluid Flow between Two Parallel Plates in a Darcy Porous Medium with Thermal Radiation and Heat Generation/Absorption

Author:

Yaseen MohORCID,Rawat Sawan KumarORCID,Shafiq AnumORCID,Kumar Manoj,Nonlaopon KamsingORCID

Abstract

In the last two decades, academicians have concentrated on the nanofluid squeezing flow between parallel plates. The increasing energy demands and their applications have seen the focus shifted to the hybrid nanofluid flows, but so much is still left to be investigated. This analysis is executed to explore the symmetry of the MHD squeezing nanofluid (MoS2/H2O) flow and the hybrid nanofluid (MoS2–SiO2/H2O–C2H6O2) flow between the parallel plates and their heat transport property. The heat transport phenomenon is analyzed with the magnetic field, thermal radiation, heat source/sink, suction/injection effect, and porous medium. In the present model, the plate situated above is in the movement towards the lower plate, and the latter is stretching with a linear velocity. The prevailing PDEs depicting the modeled problem with the aforementioned effects are transformed via similarity transformations and solved via the “bvp4c” function, which is an inbuilt function in MATLAB software. The control of the factors on the fields of velocity and temperature, heat transfer rate, velocity boundary layer patterns, and streamlines is investigated. The solution profiles are visually shown and explained. Furthermore, the Nusselt number at the bottom plate is larger for the (MoS2–SiO2/H2O–C2H6O2) hybrid nanofluid than for the (MoS2/H2O) nanofluid flow. In the presence of suction/injection, the streamlines appear to be denser. In addition, the magnetic field has a thinning consequence on the velocity boundary layer region. The results of this study apply to several thermal systems, engineering, and industrial processes, which utilize nanofluid and hybrid nanofluid for cooling and heating processes.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3