Persistent Homology Analysis for Dense QCD Effective Model with Heavy Quarks

Author:

Kashiwa KoujiORCID,Hirakida Takehiro,Kouno Hiroaki

Abstract

The isospin chemical potential region is known as the sign-problem-free region of quantum chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-dimensional three-state Potts model to mimic dense QCD; e.g., the QCD effective model with heavy quarks at finite density. We call it the QCD-like Potts model. The QCD-like Potts model does not have a sign problem, but we expect it to share some properties with QCD. Since we can obtain the non-approximated Potts spin configuration at finite isospin chemical potential, where the simple Metropolis algorithm can work, we perform the persistent homology analysis toward exploring the dense spatial structure of QCD. We show that the averaged birth-death ratio has the same information with the Polyakov loop, but the maximum birth-death ratio has additional information near the phase transition where the birth-death ratio means the ratio of the creation time of a hole and its vanishing time based on the persistent homology.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

1. Simulating QCD at finite density;PoS,2009

2. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I;Nambu;Phys. Rev. D,1961

3. The potts model;Wu;Rev. Mod. Phys.,1982

4. Spin models in complex magnetic fields: A hard sign problem;Rindlisbacher;EPJ Web Conf.,2018

5. Solution of the sign problem in the Potts model at fixed fermion number;Alexandru;Phys. Rev. D,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3