DEM–FEM Coupling Simulation of the Transfer Chute Wear with the Dynamic Calibration DEM Parameters

Author:

Ye Fangping,Qiang Yuezhang,Jiang Weijie,Fu XiangORCID

Abstract

Transfer chutes for bulk material conveying systems have significant importance in ship loading and unloading and are ‘worn’ from large mass flow and fast granular material flow conditions. In this investigation, the impact forces of different granular materials on the transfer chute wear process are considered; the DEM–FEM (Discrete Element Method–Finite Element Method) coupling method was used to calculate the wear and the deformation of the transfer chute. The stress–strain and cumulative contact energy from three different granular materials were analyzed under different working conditions. The results show that the wear, stress–strain, and cumulative contact energy of the transfer chute are closely related to the belt speed, the chute inclination angle, and the types of granular materials; the impact force and the stress–strain on the transfer chute achieves maximum value under a 4 m/s belt speed condition; meanwhile, with the increase of belt speed by 0.5 m/s, the wear of the transfer chute increases 25% and the deformation increases 20%; the shape variable, wear area, and normal cumulative contact capacity of the transfer chute are the smallest with a transfer chute inclination angle from 40° to 45°.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference16 articles.

1. Simulation and Analysis of Material Horizontal Vibration Conveying Based on DEM

2. Numerical Simulations Of Bulk Handling in Screw Conveyors by Three-Dimensional DEM;Shimizu,2000

3. Maize straw cutting process modelling and parameter calibration based on discrete element method (DEM);Zheng;INMATEH-Agric. Eng.,2021

4. Dem simulations on gate loads and bin storage characteristics before discharge

5. Analysis of furnace slag in railway sub-ballast based on experimental tests and DEM simulations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3