Abstract
Transfer chutes for bulk material conveying systems have significant importance in ship loading and unloading and are ‘worn’ from large mass flow and fast granular material flow conditions. In this investigation, the impact forces of different granular materials on the transfer chute wear process are considered; the DEM–FEM (Discrete Element Method–Finite Element Method) coupling method was used to calculate the wear and the deformation of the transfer chute. The stress–strain and cumulative contact energy from three different granular materials were analyzed under different working conditions. The results show that the wear, stress–strain, and cumulative contact energy of the transfer chute are closely related to the belt speed, the chute inclination angle, and the types of granular materials; the impact force and the stress–strain on the transfer chute achieves maximum value under a 4 m/s belt speed condition; meanwhile, with the increase of belt speed by 0.5 m/s, the wear of the transfer chute increases 25% and the deformation increases 20%; the shape variable, wear area, and normal cumulative contact capacity of the transfer chute are the smallest with a transfer chute inclination angle from 40° to 45°.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献