Abstract
CO2 methanation is typically carried out using Ni-supported catalysts containing promoters such as alkali or alkali-earth metals to improve their properties. In this work, bimetallic Ni-based USY zeolite catalysts containing alkali (Li, K and Cs) and alkali-earth (Mg, Ca) metal compounds were prepared using the same conditions (15 wt% of metals; co-impregnation), characterized by N2 sorption, XRD, TGA, CO2 adsorption–desorption, DRS UV-Vis and H2-TPR, and finally applied in CO2 methanation reaction (86,100 mL h−1 g−1, PCO2 = 0.16 bar, H2:CO2 = 4:1). For each group, the effects of the second metal nature on the properties and performances were assessed. Alkali metals incorporation induced considerably low catalytic performances (CH4 yields < 26%), attributed to their negative impact on zeolite structure preservation. On the contrary, alkali-earth metal-containing catalysts exhibited lower structural damage. However, the formation of Ni-Mg mixed oxides in Ni-Mg/USY catalyst and CaCO3 during the reaction in Ni-Ca/USY sample could explain their performances, similar or lower than those obtained for Ni/USY catalyst. Among the studied metals, calcium was identified as the most interesting (CH4 yield of 65% at 415 °C), which was ascribed to the slight improvement of the Ni0 dispersion.
Funder
Fundação para a Ciência e a Tecnologia
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献