Transformer-Based Weed Segmentation for Grass Management

Author:

Jiang KanORCID,Afzaal UsmanORCID,Lee Joonwhoan

Abstract

Weed control is among the most challenging issues for crop cultivation and turf grass management. In addition to hosting various insects and plant pathogens, weeds compete with crop for nutrients, water and sunlight. This results in problems such as the loss of crop yield, the contamination of food crops and disruption in the field aesthetics and practicality. Therefore, effective and efficient weed detection and mapping methods are indispensable. Deep learning (DL) techniques for the rapid recognition and localization of objects from images or videos have shown promising results in various areas of interest, including the agricultural sector. Attention-based Transformer models are a promising alternative to traditional constitutional neural networks (CNNs) and offer state-of-the-art results for multiple tasks in the natural language processing (NLP) domain. To this end, we exploited these models to address the aforementioned weed detection problem with potential applications in automated robots. Our weed dataset comprised of 1006 images for 10 weed classes, which allowed us to develop deep learning-based semantic segmentation models for the localization of these weed classes. The dataset was further augmented to cater for the need of a large sample set of the Transformer models. A study was conducted to evaluate the results of three types of Transformer architectures, which included Swin Transformer, SegFormer and Segmenter, on the dataset, with SegFormer achieving final Mean Accuracy (mAcc) and Mean Intersection of Union (mIoU) of 75.18% and 65.74%, while also being the least computationally expensive, with just 3.7 M parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. A compilation of UAV applications for precision agriculture;Sarigiannidis;Comput. Netw.,2020

2. A survey of image processing techniques for plant extraction and segmentation in the field;Hamuda;Comput. Electron. Agric.,2016

3. Sakyi, L.L.S. (2019, January 01). 2019. Available online: https://greenrootltd.com/2019/02/19/five-general-categories-of-weed-control-methods/.

4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst., 30.

5. A DNN-based semantic segmentation for detecting weed and crop;You;Comput. Electron. Agric.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3