Effects of Bacillus cereus NJSZ-13 on Fatty Acid Metabolism of Bursaphelenchus xylophilus

Author:

Pan Min1,Xu Jialin1,Han Shengjie1,Sun Yufeng1,Tan Jiajin1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China

Abstract

In order to explore the changes in the fatty acid metabolism of Bursaphelenchus xylophilus under the treatment of Bacillus cereus NJSZ-13, the surface changes in lipid droplets were observed under a Zeiss microscope after the B. xylophilus was stained with modified Oil Red O. The triglyceride (TG) content in B. xylophilus was determined according to the TG kit instructions. The type and content of fatty acids in B. xylophilus were detected by gas chromatography–mass spectrometry (GC-MS); the stearyl coenzyme A of B. xylophilus was analyzed by real-time fluorescence quantitative PCR. The change in Bx-SCD (gene regulating stearyl CoA desaturase in B. xylophilus) expression was observed. The results showed that the lipid droplets of B. xylophilus treated with NJSZ-13 were broken to varying degrees, and the TGs in B. xylophilus decreased continuously. The total fatty acid content in the bodies of treated B. xylophilus decreased: the difference between the fermentation broth treatment and the control was extremely significant (p < 0.01); that between the fermentation filtrate and the control was significant (p < 0.05); and that between the bacterial suspension and the control was not significant (p > 0.05). Saturated fatty acids decreased in all treatments, but not significantly. Compared with the control group, the unsaturated fatty acid content in fermentation broth and fermentation filtrate treatments was extremely significantly reduced, and the unsaturated fatty acid content of the bacterial suspension group was significantly decreased, which indicated that NJSZ-13 mainly caused a decrease in the unsaturated fatty acids in B. xylophilus. The trend in changes in monounsaturated fatty acids and unsaturated fatty acids was the same, but for polyunsaturated fatty acids, the fermentation broth and fermentation filtrate treatments caused a significant decrease in content, but the bacterial suspension resulted in no significant change. The results showed that NJSZ-13 mainly caused a decrease in monounsaturated fatty acid content in B. xylophilus. In addition, the contents of C16:1, C18:1, and C18:2 fatty acids were significantly decreased after treatment with strain NJSZ-13 for 48 h, and the contents of C16:1, C18:1, C18:2, and C20:4 were extremely significantly decreased after the fermentation broth and filtrate treatments. The expression of Bx-SCD in B. xylophilus was significantly lower than that of the control (p < 0.0001). This study analyzed the changes in the content of related substances and relative gene expression in fatty acid metabolism of B. xylophilus treated with strain NJSZ-13, and preliminarily reveals the nematicidal mechanism of strain NJSZ-13 against B. xylophilus. This provides a theoretical basis for further exploration of the key cause of death induced by this strain in B. xylophilus.

Funder

China National key Research and Development Program

Publisher

MDPI AG

Subject

Forestry

Reference30 articles.

1. Induction of resistance against pine wilt disease caused by Bursaphelenchus xylophilus using selected pine endophytic bacteria;Kim;Plant Pathol.,2019

2. Preliminary investigations of vector beetle and nematode species in Pinus massoniana forest in Huangshan City;Wang;J. Nanjing For. Univ. (Nat. Sci. Ed.),2022

3. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus;Ding;J. Nanjing For. Univ. (Nat. Sci. Ed.),2022

4. Study on the Control of Bursaphelenchus xylophilus;Chen;J. Jilin For. Sci. Technol.,2019

5. A study on the biocontrol of pine wilt disease by Bacillus cereus NJSZ-13;Yin;J. Nanjing For. Univ. (Nat. Sci. Ed.),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3