Exceedance and Return Period of High Temperature in the African Region

Author:

Turasie Alemtsehai A.ORCID

Abstract

Several studies have indicated that the social, economic and other impacts of global warming can be linked with changes in the frequency and intensity of extreme weather/climate events. Developing countries, particularly in the African region, are highly affected by extreme events such as high temperature, usually followed/accompanied by drought. Therefore, studying the probability of occurrence and return period of extreme temperatures, and possible change in these parameters, is of high importance for climate-related policy making and preparedness works in the region. This study aims to address these issues by assessing probability of exceedance and return period of extremes in annual maximum and annual mean temperatures. The analyses of historical data in this study showed that extremes in both annual maximum and mean temperature are highly likely to be exceeded more often in the future compared to the past. For the extreme event marker (threshold) defined in this study, probability of 3 exceedances in the following 19 years (for instance), at any gridpoint, is estimated to be at least 10% for extremes in annual maxima and at least 15% for those in annual means. Most places in the region, however, have much higher (up to 20%) probability of exceedance. The estimated probability of exceedance has shown increasing tendency with time. Return period, based on the most recent data, of extremes in annual maximum temperature is found to be less than 6.5 years at about 48% of the gridpoints in the region. Similarly, return period of extremes in annual mean temperature is estimated to be less than 5.5 years at about 82% of places in the region. These estimates have also shown a strong tendency of getting shorter as time goes on. On average, extremes in annual mean temperature were found to have shorter return periods (4–7 years) compared to those in annual maximum temperature (6–10 years), at 95% confidence. The empirical results presented in this study are generally in agreement with IPCC’s projections of increased warming trend. This data-driven, robust method is used in the present study and the results can also be considered as an alternative approach for detecting changes in climate via estimating and assessing possible changes in frequency of extreme events with time.

Publisher

MDPI AG

Subject

Atmospheric Science

Reference41 articles.

1. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the IPCC;Field,2012

2. Global observed changes in daily climate extremes of temperature and precipitation

3. Trends of Extreme Temperatures in Europe and China based on Daily Observations;Yan,2002

4. Mathematics & Climate;Kaper,2013

5. Statistics of Extreme Events with Application to Climate;Abarbanel,1992

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3