Work Fluctuations in Ergotropic Heat Engines

Author:

Chesi Giovanni1ORCID,Macchiavello Chiara12ORCID,Sacchi Massimiliano Federico23ORCID

Affiliation:

1. National Institute for Nuclear Physics, Sezione di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy

2. QUIT Group, Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy

3. CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

We study the work fluctuations in ergotropic heat engines, namely two-stroke quantum Otto engines where the work stroke is designed to extract the ergotropy (the maximum amount of work by a cyclic unitary evolution) from a couple of quantum systems at canonical equilibrium at two different temperatures, whereas the heat stroke thermalizes back the systems to their respective reservoirs. We provide an exhaustive study for the case of two qutrits whose energy levels are equally spaced at two different frequencies by deriving the complete work statistics. By varying the values of temperatures and frequencies, only three kinds of optimal unitary strokes are found: the swap operator U1, an idle swap U2 (where one of the qutrits is regarded as an effective qubit), and a non-trivial permutation of energy eigenstates U3, which indeed corresponds to the composition of the two previous unitaries, namely U3=U2U1. While U1 and U2 are Hermitian (and hence involutions), U3 is not. This point has an impact on the thermodynamic uncertainty relations (TURs), which bound the signal-to-noise ratio of the extracted work in terms of the entropy production. In fact, we show that all TURs derived from a strong detailed fluctuation theorem are violated by the transformation U3.

Funder

EU H2020 QuantERA ERA-NET Cofund in Quantum Technologies project QuICHE

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3