Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory

Author:

Wen Chaoran12,Nie Ting1,Li Mingxuan1,Wang Xiaofeng12,Huang Liang1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Under low-illumination conditions, the quality of the images collected by the sensor is significantly impacted, and the images have visual problems such as noise, artifacts, and brightness reduction. Therefore, this paper proposes an effective network based on Retinex for low-illumination image enhancement. Inspired by Retinex theory, images are decomposed into two parts in the decomposition network, and sent to the sub-network for processing. The reconstruction network constructs global and local residual convolution blocks to denoize the reflection component. The enhancement network uses frequency information, combined with attention mechanism and residual density network to enhance contrast and improve the details of the illumination component. A large number of experiments on public datasets show that our method is superior to existing methods in both quantitative and visual aspects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Digital image-processing;Hunt;Adv. Imaging Electron Phys.,1983

2. DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement;Jiang;Tsinghua Sci. Technol.,2023

3. Enhancement estimation network for flexibly enhancing low-light images via lighting level estimation;Huang;J. Electron. Imaging,2023

4. Low-Light Image Enhancement: A comparative review and prospects;Kim;IEEE Access,2022

5. Low-light image enhancement via a deep hybrid network;Ren;IEEE Trans. Image Process.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3