A Comparison of Different Water Indices and Band Downscaling Methods for Water Bodies Mapping from Sentinel-2 Imagery at 10-M Resolution

Author:

Liu Haiyang,Hu Hongda,Liu XulongORCID,Jiang HaoORCID,Liu Wanxia,Yin Xiaoling

Abstract

Satellite-based remote sensing is important for monitoring the spatial distribution of water resources. The water index is currently one of the most widely used water body extraction methods. Based on Sentinel-2 remote sensing image, this study combines area-to-point regression kriging interpolation, bilinear interpolation, and the Gram–Schmidt (GS) pan-sharpening method with the water indices MNDWI, AWEIsh and WI2015 to compare different water body extraction methods. The experimental results showed that all water indices have satisfactory extraction ability, with the kappa coefficient as an accuracy threshold above 0.8. Moreover, the GS downscaling method combined with the WI2015 yielded the best performance. This research demonstrates the efficacy of the WI2015 method to extract water bodies in urban areas and its ability to comprehensively describe river water bodies. The findings indicate that high-resolution band information is particularly important for improving low-resolution band downscaling results and can significantly minimize erroneous water body extraction.

Funder

Natural Science Foundation of Guangdong Province

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing coastal water body segmentation with Landsat Irish Coastal Segmentation (LICS) dataset;Remote Sensing Applications: Society and Environment;2024-11

2. Changes in river morphology and influencing factors in the upper Yellow River over the past 25 years;Geomorphology;2024-11

3. Monitoring of coastline change using Sentinel-2 MSI data. A case study in Thanh Hoa Province, Vietnam;Bulletin of Geography. Physical Geography Series;2024-06-25

4. Performance of water indices for large-scale water resources monitoring using Sentinel-2 data in Ethiopia;Environmental Monitoring and Assessment;2024-04-22

5. Narratives on quality water assessment and contemporary challenge;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3