Production, Kinetic/Thermodynamic Study, and Evaluation of the Influence of Static Magnetic Field on Kinetic Parameters of β-Fructofuranosidase from Aspergillus tamarii Kita UCP 1279 Produced by Solid-State Fermentation

Author:

de Oliveira Rodrigo Lira1ORCID,dos Santos Aldeci França Araújo2ORCID,Cardoso Bianca Alencar2ORCID,da Silva Santos Thayanne Samille2ORCID,de Campos-Takaki Galba Maria3,Porto Tatiana Souza4ORCID,Porto Camila Souza2ORCID

Affiliation:

1. School of Food Engineering, Federal University of Agreste of Pernambuco/UFAPE, Av. Bom Pastor, Boa Vista, s/n, Garanhuns 55296-901, Brazil

2. Education Unit of Penedo, Federal University of Alagoas/UFAL, Avenida Beira Rio, s/n, Penedo 57200-000, Brazil

3. Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco/UNICAP, Rua do Príncipe, 526, Recife 50050-590, Brazil

4. Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco/UFRPE, Av. Dom Manoel de Medeiros, s/n, Recife 52171-900, Brazil

Abstract

β-fructofuranosidases (FFases) are enzymes involved in sucrose hydrolysis and can be used in the production of invert sugar and fructo-oligosaccharides (FOS). This last is an important prebiotic extensively used in the food industry. In the present study, the FFase production by Aspergillus tamarii Kita UCP 1279 was assessed by solid-state fermentation using a mixture of wheat and soy brans as substrate. The FFase presents optimum pH and temperature at 5.0–7.0 and 60 °C, respectively. According to the kinetic/thermodynamic study, the FFase was relatively stable at 50 °C, a temperature frequently used in industrial FOS synthesis, using sucrose as substrate, evidenced by the parameters half-life (115.52 min) and D-value (383.76 min) and confirmed by thermodynamic parameters evaluated. The influence of static magnetic field with a 1450 G magnetic flux density presented a positive impact on FFase kinetic parameters evidenced by an increase of affinity of enzyme by substrate after exposition, observed by a decrease of 149.70 to 81.73 mM on Km. The results obtained indicate that FFases present suitable characteristics for further use in food industry applications. Moreover, the positive influence of a magnetic field is an indicator for further developments of bioprocesses with the presence of a magnetic field.

Funder

Coordenacão de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Applied Microbiology and Biotechnology,Biomedical Engineering,Biochemistry,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3