Large Scale Optical Projection Tomography without the Use of Refractive-Index-Matching Liquid

Author:

Stavroulakis Petros Ioannis1ORCID,Ganetsos Theodore2ORCID,Zabulis Xenophon3ORCID

Affiliation:

1. Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece

2. Non-Destructive Techniques Laboratory, University of West Attica, 122 41 Egaleo, Greece

3. Institute of Computer Science (ICS), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece

Abstract

The practical, rapid, and accurate optical 3D reconstruction of transparent objects with contemporary non-contact optical techniques, has been an open challenge in the field of optical metrology. The combination of refraction, reflection, and transmission in transparent objects makes it very hard to use common off-the-shelf 3D reconstruction solutions to accurately reconstruct transparent objects in three dimensions without completely coating the object with an opaque material. We demonstrate in this work that a specific class of transparent objects can indeed be reconstructed without the use of opaque spray coatings, via Optical Projection Tomography (OPT). Particularly, the 3D reconstruction of large thin-walled hollow transparent objects can be achieved via OPT, without the use of refractive-index-matching liquid, accurately enough for use in both cultural heritage and beverage packaging industry applications. We compare 3D reconstructions of our proposed OPT method to those achieved by an industrial-grade 3D scanner and report average shape differences of ±0.34 mm for ‘shelled’ hollow objects and ±0.92 mm for ‘non-shelled’ hollow objects. A disadvantage of using OPT, which was noticed on the thicker ‘non-shelled’ hollow objects, as opposed to the ‘shelled’ hollow objects, was that it induced partial filling of hollow areas and the deformation of embossed features.

Funder

European Union

Craeft Horizon Europe Research and Research Innovation Action of the European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3