The Preparation of Electrolyte Hydrogels with the Water Solubilization of Polybenzoxazine

Author:

Ohsedo Yutaka1ORCID,Kaneizumi Ami2

Affiliation:

1. Division of Engineering, Faculty of Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan

2. Graduate School of Human Centered Engineering, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan

Abstract

Polybenzoxazine (PBZ) exhibits excellent heat resistance, and PBZ derivatives have been designed and synthesized to achieve high performance. However, the application range of PBZ is limited by the strong interactions between molecular chains and its low solubility in organic solvents, thereby limiting its processability. This study focused on the benzoxazine structure as the molecular backbone of new hydrogel materials that can be applied as electrolyte materials and prepared functional gel materials. Here, we prepared hydrogels by water-solubilizing PBZ derivatives, which typically exhibit low solubility in organic solvents. Although studies on the hydrophilization of PBZ and its complexation with hydrophilic polymers have been conducted, no studies have been performed on the hydrogelation of PBZ. First, the phenol in the organic solvent-insoluble PBZ thin film obtained after the thermal ring-opening polymerization of the monomer was transformed into sodium phenoxide by immersion in a NaOH aqueous solution to water-solubilize it and obtain a hydrogel thin film. Although the hydrogel thin film exhibited low mechanical strength, a free-standing hydrogel film with improved strength was obtained through the double network gelation method with an acrylamide monomer system. The physical properties of the polymer composite hydrogel thin film were evaluated. The ionic conductivity of the hydrogel thin films was in the order of 10−4 S cm−1, indicating the potential of PBZ as an electrolyte hydrogel material. However, improving its ionic conductivity will be undertaken in future studies.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3