Dendroclimatic Reconstruction of Mean Annual Temperatures over Treeline Regions of Northern Bhutan Himalayas

Author:

Khandu Yeshey,Polthanee Anan,Isarangkool Na Ayutthaya SupatORCID

Abstract

The Himalayan region is likely particularly exposed to climate change indicated by the high regional rate of change. The number of high-resolution, well-calibrated, and long-term paleoclimate reconstructions are however regrettably few, to set this change in a longer-term context. The dendroclimatic reconstructions over Himalaya that do exist have only reconstructed summer season temperatures, and rarely or never attempted to reconstruct mean annual temperatures. The paucity of long meteorological records is a matter of concern when developing chronologies of climate sensitive tree-ring data in Bhutan, but the chronologies would theoretically be of high potential for extending short meteorological records back in time using trees in high-elevation ecotones. The objectives of this study were to explore dendroclimatic signals in tree-ring width chronologies of Abies densa growing in these extreme ecotones and to reconstruct, if possible, annual temperatures over Northern Bhutan. A point-by-point regression analysis revealed that the regional composite chronology was significantly and positively correlated with temperatures of all months of the current year, i.e., January to December. The chronology was highly correlated with annual temperatures (calibration period R = 0.67 and validation period R = 0.50; p < 0.001) allowing a reconstruction of temperature over Northern Bhutan (NB-TEMR). The NB-TEMR reveals some common variations with summer temperature reconstructions of the Northern Hemisphere as well as the Himalayan region, particularly w.r.t to the recent warming trend. The reconstruction covers the period of 1765 to 2017. This reconstruction reveals a warming trend since 1850 with higher rates of warming 1935 to 2017, but with a pause around 1940–1970. The warming is consistent with reduced volcanic activity and increase of greenhouse gases. We anticipate that our new reconstruction of annual mean temperature could be an important contribution for future climate change studies and assessments of climate models.

Funder

Thai International Cooperation Agency

Publisher

MDPI AG

Subject

Forestry

Reference96 articles.

1. An overview of tree-ring width records across the Northern Hemisphere;St. George;Quat. Sci. Rev.,2014

2. The imprint of climate within Northern Hemisphere trees;St. George;Quat. Sci. Rev.,2014

3. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions;Anchukaitis;Quat. Sci. Rev.,2017

4. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. Information from Paleoclimate Archives. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

5. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context;Wilson;Quat. Sci. Rev.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3