Author:
Wang Bocheng,Tu Zheng,Wu Chonggang,Hu Tao,Wang Xiaotao,Long Shijun,Gong Xinghou
Abstract
A poly(styrene-ran-methyl acrylate) (S-MA) (75/25 mol/mol), synthesized by surfactant-free emulsion copolymerization, was used as a compatibilizer for polystyrene-b-polybutadiene-b-polystyrene (SBS)-toughened polylactide (PLA) blends. Upon compatibilization, the blends exhibited a refined dispersed-phase morphology, a decreased crystallinity with an increase in their amorphous interphase, improved thermal stability possibly from the thicker, stronger interfaces insusceptible to thermal energy, a convergence of the maximum decomposition-rate temperatures, enhanced magnitude of complex viscosity, dynamic storage and loss moduli, a reduced ramification degree in the high-frequency terminal region of the Han plot, and an increased semicircle radius in the Cole–Cole plot due to the prolonged chain segmental relaxation times from increases in the thickness and chain entanglement degree of the interphase. When increasing the S-MA content from 0 to 3.0 wt %, the tensile properties of the blends improved considerably until 1.0 wt %, above which they then increased insignificantly, whereas the impact strength was maximized at an optimum S-MA content of ~1.0 wt %, hypothetically due to balanced effects of the medium-size SBS particles on the stabilization of preexisting crazes and the initiation of new crazes in the PLA matrix. These observations confirm that S-MA, a random copolymer first synthesized in our laboratory, acted as an effective compatibilizer for the PLA/SBS blends.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献