Graphene Oxide and Oxidized Carbon Black as Catalyst for Crosslinking of Phenolic Resins

Author:

Acocella Maria RosariaORCID,Vittore AnielloORCID,Maggio Mario,Guerra Gaetano,Giannini Luca,Tadiello Luciano

Abstract

Influence of different graphite-based nanofillers on crosslinking reaction of resorcinol, as induced by hexa(methoxymethyl)melamine, is studied. Curing reactions leading from low molecular mass compounds to crosslinked insoluble networks are studied by indirect methods based on Differential Scanning Calorimetry. Reported results show a catalytic activity of graphene oxide (eGO) on this reaction, comparable to that one already described in the literature for curing of benzoxazine. For instance, for an eGO content of 2 wt %, the exothermic crosslinking DSC peak (upon heating at 10 °C/min) shifted 6 °C. More relevantly, oxidized carbon black (oCB) is much more effective as catalyst of the considered curing reaction. In fact, for an oCB content of 2 wt %, the crosslinking DSC peak can be shifted more than 30 °C and a nearly complete crosslinking is already achieved by thermal treatment at 120 °C. The possible origin of the higher catalytic activity of oCB with respect to eGO is discussed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eco-friendly amidation of oxidized carbon black by dry ball milling;RSC Sustainability;2024

2. Sustainable and facile functionalization of Carbon Black via dry ball milling;2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);2023-10-22

3. Sustainable functionalization of carbon black via dry ball milling;Molecular Systems Design & Engineering;2023

4. Phenol formaldehyde resin modified by cellulose and lignin nanomaterials: Review and recent progress;International Journal of Biological Macromolecules;2022-12

5. Green Oxidation of Carbon Black by Dry Ball Milling;ACS Sustainable Chemistry & Engineering;2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3