Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance

Author:

Zhang Luwei,Kong Haijuan,Qiao Mengmeng,Ding Xiaoma,Yu Muhuo

Abstract

Aramid fibers (AFs) with their high Young′s modulus and tenacity are easy to degrade seriously with ultraviolet (UV) radiation that leads to reduction in their performance, causing premature failure and limiting their outdoor end use. Herein, we report a method to synthesize nano-SiO2 on AFs surfaces in supercritical carbon dioxide (Sc-CO2) to simultaneously improve their UV resistance, thermal stability, and interfacial shear strength (IFSS). The effects of different pressures (10, 12, 14, 16 MPa) on the growth of nanoparticles were investigated. The untreated and modified fibers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It was found that the nano-SiO2-decorated fibers exhibited improvement of thermal stability and mechanical properties, and the IFSS of the nano-SiO2 modified fibers increases by up to 64% compared with the untreated fibers. After exposure to 216 h of UV radiation, the AFs-UV shows a less decrease in tensile strength, elongation to break and tensile modulus, retaining only 73%, 91%, and 85% of the pristine AFs, respectively, while those of AFs-SiO2-14MPa-UV retain 91.5%, 98%, and 95.5%. In short, this study presents a green method for growing nano-SiO2 on the surface of AFs by Sc-CO2 to enhance the thermal stability, IFSS, and UV resistance.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3