Dipolar Glass Polymers Containing Polarizable Groups as Dielectric Materials for Energy Storage Applications. A Minireview

Author:

Bonardd Sebastián,Moreno-Serna Viviana,Kortaberria Galder,Díaz Díaz David,Leiva Angel,Saldías César

Abstract

Materials that have high dielectric constants, high energy densities and minimum dielectric losses are highly desirable for use in capacitor devices. In this sense, polymers and polymer blends have several advantages over inorganic and composite materials, such as their flexibilities, high breakdown strengths, and low dielectric losses. Moreover, the dielectric performance of a polymer depends strongly on its electronic, atomic, dipolar, ionic, and interfacial polarizations. For these reasons, chemical modification and the introduction of specific functional groups (e.g., F, CN and R−S(=O)2−R´) would improve the dielectric properties, e.g., by varying the dipolar polarization. These functional groups have been demonstrated to have large dipole moments. In this way, a high orientational polarization in the polymer can be achieved. However, the decrease in the polarization due to dielectric dissipation and the frequency dependency of the polarization are challenging tasks to date. Polymers with high glass transition temperatures (Tg) that contain permanent dipoles can help to reduce dielectric losses due to conduction phenomena related to ionic mechanisms. Additionally, sub-Tg transitions (e.g., γ and β relaxations) attributed to the free rotational motions of the dipolar entities would increase the polarization of the material, resulting in polymers with high dielectric constants and, hopefully, dielectric losses that are as low as possible. Thus, polymer materials with high glass transition temperatures and considerable contributions from the dipolar polarization mechanisms of sub-Tg transitions are known as “dipolar glass polymers”. Considering this, the main aspects of this combined strategy and the future prospects of these types of material were discussed.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3