Effect of Semi-Conductive Layer Modified by Magnetic Particle SrFe12O19 on Charge Injection Characteristics of HVDC Cable

Author:

Wei Yanhui,Liu Mingyue,Wang Jiaxing,Li Guochang,Hao Chuncheng,Lei Qingquan

Abstract

For high voltage direct current (HVDC) cable, a semi-conductive layer lies between the conductor and the insulation layer; as the charge migrates the path from the conductor to the insulation material, it will affect space charge injection. In this work, the research idea of changing the injection path of moving charges within semi-conductive layer by magnetic particles was proposed. Semi-conductive composites with different SrFe12O19 contents of 1 wt.%, 5 wt.%, 10 wt.%, 20 wt.%, and 30 wt.% were prepared, and the amount of injected charges in the insulation sample was characterized by space charge distribution, polarization current, and thermally-stimulated depolarization current. The experimental results show that a small amount of SrFe12O19 can significantly reduce charge injection in the insulation sample, owing to the deflection of the charge migration path, and only part of the electrons can enter the insulation sample. When the content is 5 wt.%, the insulation sample has the smallest charge amount, 0.89 × 10−7 C, decreasing by 37%, and the steady-state current is 6.01 × 10−10 A, decreasing by 22%. When SrFe12O19 content exceeds 10 wt.%, the charge suppression effect is not obvious and even leads to the increase of charge amount in the insulation sample, owing to the secondary injection of charges. Most moving charges will deflect towards the horizontal direction and cannot direct access to the insulation sample, resulting in a large number of charges accumulation in the semi-conductive layer. These charges will seriously enhance the interface electric field near the insulation sample, leading to the secondary injection of charges, which are easier to inject into the insulation sample.

Funder

Shandong Provincial Natural Science Foundation, China

China Postdoctoral Science Foundation

National Engineering Laboratory for Ultra High Voltage Engineering Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3