Effect of Sulfonic Groups Concentration on IEC Properties in New Fluorinated Copolyamides

Author:

Pali-Casanova Ramón,Yam-Cervantes MarcialORCID,Zavala-Loría. José,Loría-Bastarrachea María,Aguilar-Vega Manuel,Dzul-López LuisORCID,Sámano-Celorio María,Crespo-Álvarez JorgeORCID,García-Villena Eduardo,Agudo-Toyos Pablo,Méndez-Martínez Francisco

Abstract

Seven aromatic polyamides and copolyamides were synthesized from two different aromatic diamines: 4,4′-(Hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (HFDA) and 2,4-Aminobenzenesulfonic acid (DABS). The synthesis was carried out by polycondensation using isophthaloyl dichloride (1SO). The effect of an increasing molar concentration of the sulfonated groups, from DABS, in the copolymer properties was evaluated. Inherent viscosity tests were carried out to estimate molecular weights. Mechanical tests were carried out under tension, maximum strength ( σ max), Young’s modulus (E), and elongation at break (εmax) to determine their mechanical properties. Tests for water sorption and ion exchange capacity (IEC) were carried out. Proton conductivity was measured using electrochemical impedance spectroscopy (EIS). The results indicate that as the degree of sulfonation increase, the greater the proton conductivity. The results obtained showed conductivity values lower than the commercial membrane Nafion 115 of 0.0065 S cm−1. The membrane from copolyamide HFDA/DABS/1S0-70/30 with 30 mol DABS obtained the best IEC, with a value of 0.747 mmol g−1 that resulted in a conductivity of 2.7018 × 10−4 S cm−1, lower than the data reported for the commercial membrane Nafion 115. According to the results obtained, we can suggest that further developments increasing IEC will render membranes based on aromatic polyamides that are suitable for their use in PEM fuel cells.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3