On the Para/Ortho Reactivity of Isocyanate Groups during the Carbamation of Cellulose Nanocrystals Using 2,4-Toluene Diisocyanate

Author:

Abushammala HatemORCID

Abstract

2,4-toluene diisocyanate (TDI) has been commonly used to bind molecules and polymers onto the surface of cellulose nanocrystals (CNCs). Such a process usually involves two steps: (1) the more reactive para-isocyanates (p-NCOs) of TDI are reacted with the surface hydroxyl groups of CNCs then (2) the ortho-isocyanates (o-NCOs) are reacted with certain desired molecules. During the first reaction, an ideal para/ortho selectivity could be impossible to achieve, as o-NCOs are not fully unreactive. Therefore, there is a need to better understand the reaction between CNCs and TDI towards a maximum para/ortho selectivity. For that goal, CNCs were reacted with TDI under varying temperatures (35–75 °C) and TDI/CNCs molar ratios (1–5). The amount of the reacted TDI was estimated using elemental analysis while the free o-NCO groups were quantified following the hydrolysis method of Abushammala. The results showed that temperature had a negative impact on para/ortho selectivity while TDI/CNCs molar ratio improved it. A maximum selectivity of 93% was achieved using a temperature of 35 °C and a molar ratio of 3. This is a three-fold improvement to that using the traditional reaction conditions (75 °C and molar ratio of 1).

Funder

Fraunhofer Institute for Wood Research (WKI)

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

1. Standard Terms and Their Definition for Cellulose Nanomaterial (ISO/TS 20477),2017

2. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis

3. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood

4. Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources;Mao,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3