Abstract
In this work, a novel phosphorous–nitrogen based charring agent named poly(1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (PDTBP) was synthesized and used to improve the flame retardancy of high-density polyethylene (HDPE) together with ammonium polyphosphate (APP). The results of Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance (NMR) showed that PDTBP was successfully synthesized. Compared with the traditional intumescent flame retardant (IFR) system contained APP and pentaerythritol (PER), the novel IFR system (APP/PDTBP, weight ratio of 2:1) could significantly promote the flame retardancy, water resistance, and thermal stability of HDPE. The HDPE/APP/PDTBP composites (PE3) could achieve a UL-94 V-0 rating with LOI value of 30.8%, and had a lower migration percentage (2.2%). However, the HDPE/APP/PER composites (PE5) had the highest migration percentage (4.7%), lower LOI value of 23.9%, and could only achieve a UL-94 V-1 rating. Besides, the peak of heat release rate (PHRR), total heat release (THR), and fire hazard value of PE3 were markedly decreased compared to PE5. PE3 had higher tensile strength and flexural strength of 16.27 ± 0.42 MPa and 32.03 ± 0.59 MPa, respectively. Furthermore, the possible flame-retardant mechanism of the APP/PDTBP IFR system indicated that compact and continuous intumescent char layer would be formed during burning, thus inhibiting the degradation of substrate material and improving the thermal stability of HDPE.
Funder
China Postdoctoral Science Foundation
Subject
Polymers and Plastics,General Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献