Integrated Management Practices for Canopy–Topsoil Improves the Grain Yield of Maize with High Planting Density

Author:

Sun Xuefang1,Li Xuejie1,Jiang Wen1,Zhao Ming2,Gao Zhuohan2,Ge Junzhu3,Sun Qing1,Ding Zaisong2,Zhou Baoyuan2ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China

2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

3. College of Agronomy, Resources and Environment, Tianjin Agricultural University, Tianjin 300392, China

Abstract

Inappropriate spatial distribution of canopy and roots limits further improvements to the grain yield of maize with increased planting density. We explored an integrated management practice called strip deep rotary with staggered planting (SRS) which includes comprehensive technology for both canopy layers and topsoil. Here, field experiments were conducted under two maize cropping systems (spring maize and summer maize) to evaluate the effect of SRS on the spatial distribution of the canopy and roots for maize under high planting density (90,000 plants ha−1) and to determine the physiological factors involved in yield formation. Compared with conventional management practices (no-tillage with single planting, NTS), SRS decreased the LAI of the middle to top layers while improving the light distribution of the middle and lower layers by 72.99% and 84.78%, respectively. Meanwhile, SRS increased the root dry weight density and root sap bleeding by 51.26% and 21.77%, respectively, due to the reduction in soil bulk density by an average of 5.08% in the 0–40 cm soil layer. SRS improved the SPAD in the ear and lower leaves and maximized the LAD, which was conducive to dry matter accumulation (DMA), increasing it by 14.02–24.16% compared to that of NTS. As a result, SRS increased maize grain yield by 6.71–25.44%. These results suggest that strip deep rotary combined with staggered planting noticeably optimized the distribution of light in the canopy and reduced the soil bulk density to promote root vitality and growth, to maintain canopy longevity, and to promote the accumulation of dry matter, which eventually increased the grain yield of the maize under high planting density conditions. Therefore, SRS can be considered a better choice for the sustainable high yield of maize under high-density planting conditions in the NCP and similar areas throughout the world.

Funder

China Agriculture Research System of MOF and MARA

CAAS Science and Technology Innovation Program

Qingdao Agricultural University High-level Talents Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3