Detection of Transcription Factors Related to Axillary Bud Development after Exposure to Cold Conditions in Hexaploid Chrysanthemum morifolium Using Arabidopsis Information

Author:

Tanaka Tsuyoshi1ORCID,Sasaki Katsutomo2

Affiliation:

1. Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan

2. Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba 305-0852, Ibaraki, Japan

Abstract

Chrysanthemum is one of the most commercially used ornamental flowering plants in the world. As chrysanthemum is self-incompatible, the propagation of identical varieties is carried out through cuttings rather than through seed. Axillary bud development can be controlled by changing the temperature; for instance, axillary bud development in some varieties is suppressed at high temperatures. In this study, we focused on the simultaneous axillary bud growth from multiple lines of chrysanthemum upon changing conditions from low to normal temperature. Transcriptome analysis was conducted on the Chrysanthemum morifolium cultivar ’Jinba’ to identify the important genes for axillary bud development seen when moved from low-temperature treatment to normal cultivation temperature. We performed RNA-Seq analysis on plants after cold conditions in two-day time-course experiments. Under these settings, we constructed a transcriptome of 415,923 C. morifolium and extracted 7357 differentially expressed genes. Our understanding of Arabidopsis axillary meristem development and growth showed that at least 101 genes in our dataset were homologous to transcription factors involved in the biological process. In addition, six genes exhibited statistically significant variations in expression throughout conditions. We hypothesized that these genes were involved in the formation of axillary buds in C. morifolium after cold conditions.

Funder

NARO Innovation Promotion Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3