Secondary Metabolite Profiling, Antioxidant, Antidiabetic and Neuroprotective Activity of Cestrum nocturnum (Night Scented-Jasmine): Use of In Vitro and In Silico Approach in Determining the Potential Bioactive Compound

Author:

Ahmad Saheem1ORCID,Alrouji Mohammed2ORCID,Alhajlah Sharif2,Alomeir Othman3ORCID,Pandey Ramendra Pati4ORCID,Ashraf Mohammad Saquib5ORCID,Ahmad Shafeeque6ORCID,Khan Saif7

Affiliation:

1. Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 2440, Saudi Arabia

2. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia

3. Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia

4. Department of Biotechnology, SRM University Delhi-NCR, Sonepat 131 029, India

5. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia

6. Department of Biochemistry, Noida International Institute of Medical Sciences, Noida International University, Gautam Budh Nagar 203 201, India

7. Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Hail 2440, Saudi Arabia

Abstract

This study aims to describe the therapeutic potential of C. nocturnum leaf extracts against diabetes and neurological disorders via the targeting of α-amylase and acetylcholinesterase (AChE) activities, followed by computational molecular docking studies to establish a strong rationale behind the α-amylase and AChE inhibitory potential of C. nocturnum leaves-derived secondary metabolites. In our study, the antioxidant activity of the sequentially extracted C. nocturnum leaves extract was also investigated, in which the methanolic fraction exhibited the strongest antioxidant potential against DPPH (IC50 39.12 ± 0.53 µg/mL) and ABTS (IC50 20.94 ± 0.82 µg/mL) radicals. This extract strongly inhibited the α-amylase (IC50188.77 ± 1.67 µg/mL) and AChE (IC50 239.44 ± 0.93 µg/mL) in a non-competitive and competitive manner, respectively. Furthermore, in silico analysis of compounds identified in the methanolic extract of the leaves of C. nocturnum using GC-MS revealed high-affinity binding of these compounds with the catalytic sites of α-amylase and AChE, with binding energy ranging from −3.10 to −6.23 kcal/mol and from −3.32 to −8.76 kcal/mol, respectively. Conclusively, the antioxidant, antidiabetic, and anti-Alzheimer activity of this extract might be driven by the synergistic effect of these bioactive phytoconstituents.

Funder

Deanship of Scientific Research at Shaqra University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3