A Biostimulant Based on Silicon Chelates Enhances Growth and Modulates Physiological Responses of In-Vitro-Derived Strawberry Plants to In Vivo Conditions

Author:

Ambros Elena1ORCID,Kotsupiy Olga1ORCID,Karpova Evgeniya1ORCID,Panova Ulyana1,Chernonosov Alexander2ORCID,Trofimova Elena3,Goldenberg Boris4

Affiliation:

1. Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, 101 Zolotodolinskaya Str., Novosibirsk 630090, Russia

2. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia

3. Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, 18 Kutateladze Str., Novosibirsk 630128, Russia

4. Synchrotron Radiation Facility Siberian Circular Photon Source, Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, 1 Nikolsky Ave., Koltsovo 630559, Russia

Abstract

The purpose was to assess the effects of a biostimulant based on silicon chelates in terms of alleviation of the impact of in vivo conditions on strawberry (Fragaria × ananassa cv. ‘Solnechnaya polyanka’) in-vitro-derived plants. As a source of silicon chelates, a mechanocomposite (MC) obtained through mechanochemical processing of rice husks and green tea was used. Root treatment of plants with 0.3 g L−1 of MC dissolved in tap water was performed at 2 weeks after planting. Control plants were watered with tap water. The greatest shoot height, number of roots per plant, root length, number of stolons per plant, daughter ramets per stolon, relative water content, cuticle thickness, and root and shoot biomasses were achieved with the MC supplementation. The improved parameters were associated with a higher silicon content of roots and shoots of the MC-treated plants. Leaf concentrations of hydrogen peroxide and abscisic acid were reduced by the MC. This effect was accompanied by enhanced activity of superoxide dismutase and catalase. The phenolic profile showed upregulation of p-hydroxybenzoic acid, vanillic acid, gallic acid, syringic acid, and ellagic acid derivative 2, while kaempferol rutinoside and catechins were downregulated. Thus, silicon chelates improve growth and trigger the physiological processes that enhance free-radical-scavenging activity in strawberry plants in vivo.

Funder

Russian Science Foundation and the Government of the Novosibirsk Region

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3