Coconut Callus Initiation for Cell Suspension Culture

Author:

Kong Eveline Y. Y.12ORCID,Biddle Julianne13,Kalaipandian Sundaravelpandian1,Adkins Steve W.12

Affiliation:

1. School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia

2. The Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Horticultural Science, The University of Queensland, Indooroopilly, QLD 4068, Australia

3. Australian Centre for International Agricultural Research, Canberra, ACT 2617, Australia

Abstract

The development of a cell suspension culture system for the scaling up of coconut embryogenic callus (EC) production would drastically improve efforts to achieve the large-scale production of high-quality clonal plantlets. To date, the hard nature of coconut EC appeared to be the main constraint for developing cell suspension cultures. Hence, this study attempted to acquire friable EC through the following approaches: The manipulation of (1) medium type and subculture frequency, (2) a reduced 2,4-dichlorophenoxy acetic acid concentration during subculture, (3) the nitrate level and the ammonium-to-nitrate ratio, and the addition of amino acid mixture, (4) the addition of L-proline, and (5) the reduction of medium nutrients. Unfortunately, none of these culture conditions produced friable coconut EC. Even though friable EC was not achieved via these approaches, some of the conditions were found to influence the formation of compact EC, therefore these results are important for further studies focused on somatic embryogenesis in coconut and other species.

Funder

Australian Government Research Training Program Scholarship

Australian Centre for International Agricultural Research

International Coconut Community

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3