A Travel through Landscapes of Seed Dormancy

Author:

Gianinetti Alberto1ORCID

Affiliation:

1. Council for Agricultural Research and Economics (CREA)—Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy

Abstract

Basic features of seed dormancy are illustrated. The seed overall regulatory network governs seed metabolism and development, and it is coordinated by plant hormones. A functional model focused on abscisic acid (ABA), the foremost plant hormone in dormancy, is used as a framework to critically discuss the literature. Gibberellins (GAs) have a main role in germination, and the ABA–GAs balance is a typical feature of the seed state: ABA dominates during dormancy and GAs prevail through germination. Thus, the literature converges toward envisaging the development switch between dormancy and germination as represented by the ABA/GAs ratio. The ABA–GAs antagonism is based on mutual inhibition, a feature of the regulatory network architecture that characterizes development trajectories based on a regulatory circuit with a bistable switch. Properties of such kind of regulatory architecture are introduced step by step, and it is shown that seed development—toward either dormancy or germination—is more properly represented by a tristable regulatory circuit, whose intermediate metastable states ultimately take one or the other development trajectory. Although the ABA/GAs ratio can conveniently represent the state of the seed overall regulatory network along the seed development trajectory, specific (unknown) dormancy factors are required to determine the development trajectory. The development landscape is shown to provide a well-suited representation of seed states travelling along developmental trajectories, particularly when the states are envisioned as regulatory circuits. Looking at seed dormancy in terms of regulatory circuits and development landscapes offers a valuable perspective to improve our understanding of this biological phenomenon.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference197 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3