Analysis of Nitrogen Dynamics and Transcriptomic Activity Revealed a Pivotal Role of Some Amino Acid Transporters in Nitrogen Remobilization in Poplar Senescing Leaves

Author:

Zhou Min1,Zhang Yuanlan1,Yang Jiading1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China

Abstract

Leaf senescence is an important developmental process for deciduous trees during which part of leaf nitrogen is remobilized to branches, thus being beneficial for nitrogen conservation. However, the associated regulatory mechanism remains largely unknown in deciduous trees. In this study, nitrogen dynamics and transcriptomic activity in senescing leaves were measured during autumnal senescence in hybrid poplar. Both concentrations of leaf total nitrogen (N) and amine compounds were found to decline from the pre-senescence (PRE) to the middle-senescence (MS) stage. Although the total N concentration decreased further from MS to the late-senescence (LS) and leveled off to abscission (ABS) stage, amine compound concentration increased continuously from MS to ABS, suggesting that translocation of amine compounds underperformed production of amine compounds in leaves during this period. L-glutamate, L-glutamine and α-aminoadipic acid were the top three amine compounds accumulated in senescent leaves. RNA-Seq profiling identified thousands of differentially expressed genes (DEGs) with functional association with a metabolic transition towards disassimilation. Many genes encoding amino acid metabolism enzymes and amino acid transporters (AATs) were up-regulated. Comparison of expression trend with leaf N dynamics and phylogenetic analysis identified several PtAATs which exhibited down-regulation from MS to LS stage and putatively limited leaf N remobilization. This study can serve as a primary basis to further elucidate the molecular mechanisms of nitrogen remobilization in poplar senescing leaves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3