Bread Wheat Landraces Adaptability to Low-Input Agriculture

Author:

Korpetis Evangelos1ORCID,Ninou Elissavet2,Mylonas Ioannis1,Ouzounidou Georgia3,Xynias Ioannis N.4ORCID,Mavromatis Athanasios G.5ORCID

Affiliation:

1. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA, 57001 Thessaloniki, Greece

2. Department of Agriculture, International Hellenic University, Sindos, 57400 Thessaloniki, Greece

3. Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, S. Venizelou 1, Lycovrissi, 141 23 Attika, Greece

4. School of Agricultural Technol. & Food Technol. and Nutrition, University of Western Macedonia, 53100 Florina, Greece

5. Laboratory of Genetics and Plant Breeding, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

Bread wheat landraces were an important source of biodiversity used in agriculture before the widespread adoption of high-yielding commercial cultivars adapted to high inputs. Could future agriculture exploit these landraces in different cropping systems in organic or lower-input environments? A two-year field trial was conducted to evaluate grain yield, agronomic performance, and grain quality of bread wheat landraces under different cropping systems, including low-input/organic/conventional environments. Significant variability was found for almost all characteristics among landraces, which makes landraces valuable sources of genetic variation for breeding programs aimed at achieving high and consistent production as well as high-quality products in low-input/organic environments. Additionally, landraces play a crucial role in expanding the genetic diversity of cultivated bread wheat and mitigating biodiversity erosion, thereby enabling crops to better withstand the challenges of low-input/organic agriculture. The landrace “Xilokastro Lamias” had the highest yield among the landraces evaluated in the first growing season (2.65 t·ha−1) and one of the highest yields (2.52 t·ha−1) of all genotypes in the second growing season, which shows promising potential as a starting material in breeding programs targeting high and stable yields. GGE biplot analysis identified the landrace ”Xilokastro Lamias”, along with commercial cultivars “Yecora E” and “Panifor”, as suitable candidates for direct use in low-input/organic wheat farming systems to achieve enhanced productivity. In the conventional environment (C2-IPGRB), commercial cultivars showed the highest values (3.09 to 3.41 ton·ha−1). Of the landraces, only the X4 showed a high GY (3.10 ton·ha−1) while the other landraces had ~33–85% lower yield. In the organic environment (O2-IPGRB), the highest productivity was found in the commercial cultivar X5 and the landrace X4. Commercial cultivars X8 and X7 showed ~68% reduction in GY in the organic environment compared to the conventional, while this reduction was half for the landraces. Finally, the reduction in grain yield between conventional and organic environments was observed to be 45% for commercial cultivars, while it was only half for landraces. This finding confirms the adaptability of landraces to organic agriculture.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Important Parameters Connected to Farmers’ Networking and Training That Give Added Value to “Fasolia Vanilies Feneou” and “Fava Feneou” Products;The 17th International Conference of the Hellenic Association of Agricultural Economists;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3