Identification and Characterization of Common Bean (Phaseolus vulgaris) Non-Nodulating Mutants Altered in Rhizobial Infection

Author:

Reyero-Saavedra Rocío1,Fuentes Sara Isabel1,Leija Alfonso1ORCID,Jiménez-Nopala Gladys1,Peláez Pablo1ORCID,Ramírez Mario1ORCID,Girard Lourdes1ORCID,Porch Timothy G.2,Hernández Georgina1

Affiliation:

1. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico

2. USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez 00680, Puerto Rico

Abstract

The symbiotic N2-fixation process in the legume–rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean (Phaseolus vulgaris) symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed. Our initial screening of Rhizobium etli CE3-inoculated mutant plants revealed different alterations in nodulation. We proceeded with the characterization of three non-nodulating (nnod), apparently monogenic/recessive mutants: nnod(1895), nnod(2353) and nnod(2114). Their reduced growth in a symbiotic condition was restored when the nitrate was added. A similar nnod phenotype was observed upon inoculation with other efficient rhizobia species. A microscopic analysis revealed a different impairment for each mutant in an early symbiotic step. nnod(1895) formed decreased root hair curling but had increased non-effective root hair deformation and no rhizobia infection. nnod(2353) produced normal root hair curling and rhizobia entrapment to form infection chambers, but the development of the latter was blocked. nnod(2114) formed infection threads that did not elongate and thus did not reach the root cortex level; it occasionally formed non-infected pseudo-nodules. The current research is aimed at mapping the responsible mutated gene for a better understanding of SNF in this critical food crop.

Funder

DGAPA

CONACyT

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3