Abstract
Caper is a perennial shrub that is widespread in the Mediterranean Basin. Although the fruits contain many seeds, they germinate slowly and with very low percentages, due to their nondeep physiological dormancy. The influence of the testa and endosperm, as well as the effect of applying gibberellic acid (GA3) solutions on seed germination to release its dormancy, are reported in this study. The mechanical resistance exerted by the testa and endosperm against radicle protrusion in mature caper seeds was measured. The best germination results were obtained with seeds devoid of testa wetted with water and with intact seeds wetted with a 500 mg L−1 GA3 solution, without statistical differences between them. The GA3 addition triggers an increase in both the content of endogenous gibberellins (GA) and the GA/abscisic acid ratio, increasing germination. Its germination consists of two temporally separated events: testa cracking and endosperm piercing. Testa cracking begins in the hilum-micropillar area; it involves a signal from the embryo, which GA can replace, possibly by increasing the growth potential of the embryo. After testa cracking, the radicle emerges through a hole in the micropylar endosperm. The puncture force necessary to pierce the micropylar endosperm decreased drastically during the first day of imbibition, remaining practically constant until testa cracking, decreasing afterwards, regardless of the addition or not of gibberellins.
Funder
Universitat Politècnica de València
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献