Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage

Author:

Rossi Roberta1,Amato Mariana2ORCID,Claps Salvatore1

Affiliation:

1. Council for Research in Agriculture and the Analysis of the Agricultural Economy, Research Centre for Animal Production and Aquaculture CREA-ZA, 85051 Potenza, Italy

2. School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy

Abstract

Sulla (Hedysarum coronarium L.) is a Mediterranean biannual anthelmintic forage. Due to its high productivity, nutraceutical value, and suitability for harsh environments, interest in this crop is growing. Under the current scenario of climate change and water scarcity, it is important to evaluate crop drought tolerance, especially for newly bred materials. Drought stress and well-watered conditions (50 vs. 80% of the field capacity) were applied in a pot experiment to compare responses of the widespread commercial variety Bellante with those of a recently released variety named ‘Centauro’, currently registered in the Italian national register of plant varieties but not yet available on the market. Compared to the well-watered treatment, drought-stressed plants showed lower values of fresh biomass (−69%), number of leaves (−68%), and root length (−49%). The Centauro cv. showed a different architecture to Bellante with more shoots (+43% P < 0.05) and a trend for more leaves (+25% P = 0.08). These traits are possibly related to its superior palatability. Centauro also developed a higher root length (+70%, P < 0.05) across irrigation levels. Drought stress affected condensed tannin (CT) content. A significant genotype × environment interaction was found with Centauro displaying more (+50%) and less (−35%) CT than Bellante under drought stress and well-watered conditions, respectively. The higher constitutive root length density of Centauro may be exploited in breeding programs aimed at improving the root sink, given the role of this trait in resource acquisition capacity and root-derived ecosystem services.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3