Estimation of Flat Object Deformation Using RGB-D Sensor for Robot Reproduction

Author:

He XinORCID,Matsumaru TakafumiORCID

Abstract

This paper introduces a system that can estimate the deformation process of a deformed flat object (folded plane) and generate the input data for a robot with human-like dexterous hands and fingers to reproduce the same deformation of another similar object. The system is based on processing RGB data and depth data with three core techniques: a weighted graph clustering method for non-rigid point matching and clustering; a refined region growing method for plane detection on depth data based on an offset error defined by ourselves; and a novel sliding checking model to check the bending line and adjacent relationship between each pair of planes. Through some evaluation experiments, we show the improvement of the core techniques to conventional studies. By applying our approach to different deformed papers, the performance of the entire system is confirmed to have around 1.59 degrees of average angular error, which is similar to the smallest angular discrimination of human eyes. As a result, for the deformation of the flat object caused by folding, if our system can get at least one feature point cluster on each plane, it can get spatial information of each bending line and each plane with acceptable accuracy. The subject of this paper is a folded plane, but we will develop it into a robotic reproduction of general object deformation.

Funder

Japan Society for the Promotion of Science

Waseda University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reproduction of Flat and Flexible Object Deformation using RGB-D Sensor and Robotic Manipulator;2022 IEEE International Conference on Robotics and Biomimetics (ROBIO);2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3