An N-Cyanoamide Derivative of Lithocholic Acid Co-Operates with Lysophosphatidic Acid to Promote Human Osteoblast (MG63) Differentiation

Author:

Mansell Jason P.1,Tanatani Aya2ORCID,Kagechika Hiroyuki3ORCID

Affiliation:

1. School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK

2. Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan

3. Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan

Abstract

Less-calcaemic vitamin D receptor (VDR) agonists have the potential to promote osteoblast maturation in a bone regenerative setting. The emergence of lithocholic acid (LCA) as a bona fide VDR agonist holds promise as an adjunct for arthroplasty following reports that it was less calcaemic than calcitriol (1,25D). However, LCA and some earlier derivatives, e.g., LCA acetate, had to be used at much higher concentrations than 1,25D to elicit comparable effects on osteoblasts. However, recent developments have led to the generation of far more potent LCA derivatives that even outperform the efficacy of 1,25D. These new compounds include the cyanoamide derivative, Dcha-150 (also known as AY2-79). In light of this significant development, we sought to ascertain the ability of Dcha-150 to promote human osteoblast maturation by monitoring alkaline phosphatase (ALP) and osteocalcin (OC) expression. The treatment of MG63 cells with Dcha-150 led to the production of OC. When Dcha-150 was co-administered with lysophosphatidic acid (LPA) or an LPA analogue, a synergistic increase in ALP activity occurred, with Dcha-150 showing greater potency compared to 1,25D. We also provide evidence that this synergy is likely attributed to the actions of myocardin-related transcription factor (MRTF)–serum response factor (SRF) gene transcription following LPA-receptor-induced cytoskeletal reorganisation.

Funder

University of the West of England

JSPS KAKENHI

Novartis Foundation for the Promotion of Science

Research Centre for Biomedical Engineering

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3