Multiphasic Study of Fluid-Dynamics and the Thermal Behavior of a Steel Ladle during Bottom Gas Injection Using the Eulerian Model

Author:

Urióstegui-Hernández AntonioORCID,Garnica-González Pedro,Ramos-Banderas José Ángel,Hernández-Bocanegra Constantin AlbertoORCID,Solorio-Díaz Gildardo

Abstract

In this work, the fluid dynamic and thermal behavior of steel was analyzed during argon gas stirring in a 140-t refining ladle. The Eulerian multiphase mathematical model was used in conjunction with the discrete ordinates (DO) thermal radiation model in a steel-slag-argon system. The model was validated by particle image velocimetry (PIV) and the analysis of the opening of the oil layer in a physical scale model. The effect of Al2O3 and Mg-C as a refractory in the walls was studied, and the Ranz-Marshall and Tomiyama models were compared to determine the heat exchange coefficient. The results indicated that there were no significant differences between these heat exchange models; likewise, the radiation heat transfer model adequately simulated the thermal behavior according to plant measurements, finding a thermal homogenization time of the steel of 2.5 min for a gas flow of 0.45 Nm3·min−1. Finally, both types of refractory kept the temperature of the steel within the ranges recommended in the plant; however, the use of Al2O3 had better heat retention, which would favor refining operations.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3