Research on Parameters of Wire-Filling Laser Welding and Quenching Process for Joints Microstructure and Mechanical Property of BR1500HS Steel

Author:

Zhou Lianpu,Zhu Chundong,Ma Rongfei,Wei Zihao

Abstract

With the aim to investigate the effect of parameters and the quenching process on the joint microstructure and mechanical properties of hot stamping steel by laser welding, BR1500HS boron steel was welded by wire-filling laser welding with ER70-G welding wire under different parameters. The welded specimens were heated to 900 °C and held for 5 min before water quenching. A universal material test machine, optical microscope, Vickers hardness tester, scanning electron microscope, and electron backscatter diffraction (EBSD) were used to characterize. The results show that the heat input should be greater than 1040 J/cm and the optimal wire-feeding speed is between 160 cm/min and 180 cm/min. The tensile strength of the quenched joint can reach greater than 1601.9 MPa at compatible parameters. More retained austenite distributes in the fusion zone (FZ) and fine grain zone (FGZ) than the coarse grain zone (CGZ) before quenching. However, the retained austenite in FZ and heat-affected zone (HAZ) decreases clearly and distributes uniformly after quenching. The grain diameter in FZ before quenching is not uniform and there are some coarse grains with the diameter greater than 40 μm. After quenching, the grains are refined and grain diameter is more uniform in the joint. With the increase in heat input, the microhardness of FZ and HAZ before quenching decreases from 500 HV to 450 HV. However, if the wire-feeding speed increases, the microhardness of FZ and HAZ before quenching increases from 450 HV to 500 HV. After quenching, the joint microhardness of all samples is between 450 HV and 550 HV. The fracture morphology of the joint before quenching consists of a large number of dimples and little river patterns. After quenching, the fracture morphology consists of a large amount of river patterns and cleavage facets due to the generation of martensite.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3