Abstract
Being one of the most high-demand structural materials, titanium has several disadvantages, including low resistance to high-temperature oxidation and wear. The properties of titanium and its alloys can be improved by applying protective intermetallic coatings. In this study, 2 mm thick Ti-Al-Ta and Ti-Al-Cr layers were obtained on titanium workpieces by a non-vacuum electron-beam cladding. The microstructure and phase compositions of the samples were different for various alloying elements. The Cr-containing layer consisted of α2, γ, and B2 phases, while the Ta-containing layer additionally consisted of ω′ phase (P3¯m1). At the same atomic concentrations of aluminum and an alloying element in both layers, the volume fraction of the B2/ω phase in the Ti-41Al-7Ta alloy was significantly lower than in the Ti-41Al-7Cr alloy, and the amount of γ phase was higher. The Ti-41Al-7Cr layer had the highest wear resistance (2.1 times higher than that of titanium). The maximum oxidation resistance (8 times higher compared to titanium) was observed for the Ti-41Al-7Ta layer.
Funder
Ministry of Education and Science of the Russian Federation
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献