Waste-to-Energy Generation: Complex Efficiency Analysis of Modern Technologies

Author:

Vukovic Natalia,Makogon EvgeniaORCID

Abstract

Recycling of Municipal Solid Waste (MSW) is a significant challenge all over the world. Waste-to-Energy generation solves the problem of MSW recycling and produces power for urban territories. In this study, the researchers implemented complex economic and ecological efficiency analyses of modern Waste-to-Energy technologies. The fundamental challenge of modern Waste-to-Energy generations is finding the balance between economics, ecology, and productivity. Thus, to assess the effectiveness of various thermal technologies, statistics from enterprises were used. The Balanced Scorecard (BSC) method was implemented to calculate an integral effectiveness of a particular Waste-to-Energy technological approach. Environmental and economic analysess of thermal MSW disposal technologies was carried out by selecting the data from at least 146 functioning plants in Canada, China, Finland, France, Germany, Italy, Japan, the Netherlands, Sweden, and Thailand. The research results confirm that gasification technology was the most promising and the most environmentally and cost effective. Incineration Moving Grate technology was the least effective and attractive Waste-to-Energy technology according to the results of the environmental and economic efficiency assessments. The research results can be used for urban planning in waste recycling projects and the new energy national and municipal agenda. The research results can also be useful for municipal strategic energy and sustainable plans and programs.

Funder

Development of Global Renewable Energy Resources Market”, Faculty of World Economy and International Affairs, HSE University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference82 articles.

1. A Causal Municipal Solid Waste Management Model for Sustainable Cities in Vietnam under Uncertainty: A Comparison;Tsai;Resour. Conserv. Recycl.,2020

2. Sustainable Development Goals. 2022.

3. Ternald, D. International Environmental Technology Centre. Annual Report 2020, 2020.

4. Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010, 2010.

5. Michaels, T., and Krishnan, K. 2018 Directory of Waste-to-Energy Facilities, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3