Embedded Machine Learning System for Muscle Patterns Detection in a Patient with Shoulder Disarticulation

Author:

Guzmán-Quezada Erick1ORCID,Mancilla-Jiménez Claudia2ORCID,Rosas-Agraz Fernanda13ORCID,Romo-Vázquez Rebeca3ORCID,Vélez-Pérez Hugo3ORCID

Affiliation:

1. Departamento de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico

2. Departamento de Ciencias Computacionales, Dirección de Posgrados, Campus Internacional, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico

3. Departamento de Biongeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico

Abstract

The integration of artificial intelligence (AI) models in the classification of electromyographic (EMG) signals represents a significant advancement in the design of control systems for prostheses. This study explores the development of a portable system that classifies the electrical activity of three shoulder muscles in real time for actuator control, marking a milestone in the autonomy of prosthetic devices. Utilizing low-power microcontrollers, the system ensures continuous EMG signal recording, enhancing user mobility. Focusing on a case study—a 42-year-old man with left shoulder disarticulation—EMG activity was recorded over two days using a specifically designed electronic board. Data processing was performed using the Edge Impulse platform, renowned for its effectiveness in implementing AI on edge devices. The first day was dedicated to a training session with 150 repetitions spread across 30 trials and three different movements. Based on these data, the second day tested the AI model’s ability to classify EMG signals in new movement executions in real time. The results demonstrate the potential of portable AI-based systems for prosthetic control, offering accurate and swift EMG signal classification that enhances prosthetic user functionality and experience. This study not only underscores the feasibility of real-time EMG signal classification but also paves the way for future research on practical applications and improvements in the quality of life for prosthetic users.

Funder

National Science and Technology Council

Publisher

MDPI AG

Reference45 articles.

1. Ricardez Sánchez, J.E. (2017). Sistema Producto-Servicio Para la Atención y Fabricación de Prótesis Para Personas con Discapacidad en Miembro Superior por Amputación. [Ph.D. Thesis, UAM].

2. Rehabilitation after amputation;Esquenazi;J. Am. Podiatr. Med. Assoc.,2001

3. Traumatic below-elbow amputations;Freeland;Orthopedics,2007

4. Factors related to successful upper extremity prosthetic use;Roeschlein;Prosthetics Orthot. Int.,1989

5. The social and economic outcome after upper limb amputation;Kejlaa;Prosthetics Orthot. Int.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3