Abstract
Logistic regression is the industry standard in credit risk modeling. Regulatory requirements for model explainability have halted the implementation of more advanced, non-linear machine learning algorithms, even though more accurate predictions would benefit consumers and banks alike. Deep neural networks are certainly some of the most prominent non-linear algorithms. In this paper, we propose a deep neural network model for behavioral credit rating. Behavioral models are used to assess the future performance of a bank’s existing portfolio in order to meet the capital requirements introduced by the Basel regulatory framework, which are designed to increase the banks’ ability to absorb large financial shocks. The proposed deep neural network was trained on two different datasets: the first one contains information on loans between 2009 and 2013 (during the financial crisis) and the second one from 2014 to 2018 (after the financial crisis); combined, they include more than 1.5 million examples. The proposed network outperformed multiple benchmarks and was evenly matched with the XGBoost model. Long-term credit rating performance is also presented, as well as a detailed analysis of the reprogrammed facilities’ impact on model performance.
Funder
Hrvatska Zaklada za Znanost
European Regional Development Fund
Subject
General Physics and Astronomy
Reference39 articles.
1. Credit Risk Management and Modeling;Witzany,2010
2. An Explanatory Note on the Basel II IRB Risk Weight Functions,2005
3. The Internal Ratings-Based Approach: Supporting Document to the New Basel Capital Accord,2001
4. Benchmarking regression algorithms for loss given default modeling
5. Downturn Loss Given Default: Mixture distribution estimation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献