Associations of Triglycerides and Atherogenic Index of Plasma with Brain Structure in the Middle-Aged and Elderly Adults

Author:

Chen Xixi1,Bao Yujia1,Zhao Jiahao2,Wang Ziyue1,Gao Qijing1,Ma Mingyang1ORCID,Xie Ziwen1,He Mu2ORCID,Deng Xiaobei1,Ran Jinjun1ORCID

Affiliation:

1. School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

2. Department of Foundational Mathematics, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China

Abstract

Triglyceride (TG) and atherogenic index of plasma (AIP) have been acknowledged to be risk factors for vascular insults, but their impacts on the brain system remain elusive. To fill in some gaps, we investigated associations of TG and AIP with brain structure, leveraging the UK Biobank database. TG and high-density lipoprotein cholesterol (HDL-C) were examined at baseline and AIP was calculated as log (TG/HDL-C). We build several linear regression models to estimate associations of TG and AIP with volumes of brain grey matter phenotypes. Significant inverse associations of TG and AIP with volumes of specific subcortical traits were observed, among which TG and AIP were most significantly associated with caudate nucleus (TG: β [95% confidence interval CI] = −0.036 [−0.051, −0.022], AIP: −0.038 [−0.053, −0.023]), thalamus (−0.029 [−0.042, −0.017], −0.032 [−0.045, −0.019]). Higher TG and AIP were also considerably related with reduced cortical structure volumes, where two most significant associations of TG and AIP were with insula (TG: −0.035 [−0.048, −0.022], AIP: −0.038 [−0.052, −0.025]), superior temporal gyrus (−0.030 [−0.043, −0.017], −0.033 [−0.047, −0.020]). Modification effects of sex and regular physical activity on the associations were discovered as well. Our findings show adverse associations of TG and AIP with grey matter volumes, which has essential public health implications for early prevention in neurodegenerative diseases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Science and Technology Development Fund

XJTLU Research Development Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3