Abstract
Attention is a complex cognitive process with innate resource management and information selection capabilities for maintaining a certain level of functional awareness in socio-cognitive service agents. The human-machine society depends on creating illusionary believable behaviors. These behaviors include processing sensory information based on contextual adaptation and focusing on specific aspects. The cognitive processes based on selective attention help the agent to efficiently utilize its computational resources by scheduling its intellectual tasks, which are not limited to decision-making, goal planning, action selection, and execution of actions. This study reports ongoing work on developing a cognitive architectural framework, a Nature-inspired Humanoid Cognitive Computing Platform for Self-aware and Conscious Agents (NiHA). The NiHA comprises cognitive theories, frameworks, and applications within machine consciousness (MC) and artificial general intelligence (AGI). The paper is focused on top-down and bottom-up attention mechanisms for service agents as a step towards machine consciousness. This study evaluates the behavioral impact of psychophysical states on attention. The proposed agent attains almost 90% accuracy in attention generation. In social interaction, contextual-based working is important, and the agent attains 89% accuracy in its attention by adding and checking the effect of psychophysical states on parallel selective attention. The addition of the emotions to attention process produced more contextual-based responses.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference62 articles.
1. Machine Learning for Social Multiparty Human--Robot Interaction
2. Psychophysical Judgment and Measurement;Carterette,1974
3. On a roadmap for the BICA Challenge
4. NiHA: A conscious agent;Qazi;Proceedings of the 10th International Conference on Advanced Cognitive Technologies and Applications,2018
5. General Attention Mechanism for Artificial Intelligence Systems;Helgason;Ph.D. Thesis,2013
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献