Detection on Cell Cancer Using the Deep Transfer Learning and Histogram Based Image Focus Quality Assessment

Author:

Bhuiyan Md Roman,Abdullah Junaidi

Abstract

In recent years, the number of studies using whole-slide imaging (WSIs) of histopathology slides has expanded significantly. For the development and validation of artificial intelligence (AI) systems, glass slides from retrospective cohorts including patient follow-up data have been digitized. It has become crucial to determine that the quality of such resources meets the minimum requirements for the development of AI in the future. The need for automated quality control is one of the obstacles preventing the clinical implementation of digital pathology work processes. As a consequence of the inaccuracy of scanners in determining the focus of the image, the resulting visual blur can render the scanned slide useless. Moreover, when scanned at a resolution of 20× or higher, the resulting picture size of a scanned slide is often enormous. Therefore, for digital pathology to be clinically relevant, computational algorithms must be used to rapidly and reliably measure the picture’s focus quality and decide if an image requires re-scanning. We propose a metric for evaluating the quality of digital pathology images that uses a sum of even-derivative filter bases to generate a human visual-system-like kernel, which is described as the inverse of the lens’ point spread function. This kernel is then used for a digital pathology image to change high-frequency image data degraded by the scanner’s optics and assess the patch-level focus quality. Through several studies, we demonstrate that our technique correlates with ground-truth z-level data better than previous methods, and is computationally efficient. Using deep learning techniques, our suggested system is able to identify positive and negative cancer cells in images. We further expand our technique to create a local slide-level focus quality heatmap, which can be utilized for automated slide quality control, and we illustrate our method’s value in clinical scan quality control by comparing it to subjective slide quality ratings. The proposed method, GoogleNet, VGGNet, and ResNet had accuracy values of 98.5%, 94.5%, 94.00%, and 95.00% respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3