Precision Nitrogen Fertilization for Opium Poppy Using Combined Proximal and Remote Sensor Data Fusion

Author:

Munnaf Muhammad Abdul1ORCID,Guerrero Angela1,Calera Maria2,Mouazen Abdul Mounem1ORCID

Affiliation:

1. Department of Environment, Universiteit Gent, Coupure Links 653, 9000 Gent, Belgium

2. AgriSat Iberia SL, Paseo de la Innovación 1, 02006 Albacete, Spain

Abstract

Proper management of within-field variability is crucial for maximizing crop yield, production outcomes and resource use efficiency and reducing environmental impacts. This study evaluated the agroeconomic and environmental feasibilities of site-specific nitrogen fertilization (SNF) in opium poppy (Papaver somniferum L.). On-line visible and near-infrared reflectance spectroscopy was used to estimate soil pH, organic carbon (OC), soil organic matter (SOM), P, K, Mg, Ca, Na, moisture content (MC), Ca:Mg and K:Mg for one field in Spain. Normalized difference vegetation indexes of the previous crop were retrieved from Sentine-2 images. Rasterization of soil and crop data layers created a spatially homogenous dataset followed by delineation of a management zone (MZ) map using a k-means cluster analysis. MZ clusters were ranked relying on the within-cluster soil fertility attributes. A strip experiment was conducted by creating parallel stripes distributed over the MZ map, over which two SNF treatments (i.e., SNF-Kings approach [KA] and SNF-Robin Hood approach [RHA]) were compared against the uniform rate N (URN) control treatment. In SNF-KA, the highest and lowest N dose was applied in the most and least fertile MZ, respectively, whereas the opposite approach was adopted in the SNF-RHA treatment. Yield and cost–benefit analyses provided both SNF treatments to produce more yield (KA = 2.72 and RHA = 2.74 t ha−1) than the URN (2.64 t ha−1) treatment, leading to increasing gross margins by EUR 91 ha−1 (SNF–KA) and EUR 88.5 ha−1 (SNF–RHA). While SNF-KA reduced N input by 66.54 kg N ha−1, SNF–RHA applied more N by 17.90 kg N ha−1 than URN. Additionally, SNF–RHA attempted to equalize yield responses to N across MZ classes, with a small increase in N input. This study, therefore, suggests adopting SNF–RHA for increasing yield and gross margin and accurate distribution of N according to per MZ N response. Future studies, however, should address the limitations of the current study by delineating MZ maps with the incorporation of additional soil information (e.g., mineral N and clay) for optimizing N doses as well as evaluating agroeconomic performance across multiple sites and years using a full-budget analysis.

Funder

European Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3