Abstract
Furfural is only derived from lignocellulosic biomass and is an important chemical used in the plastics, agrochemical, and pharmaceutical industries. The existing industrial furfural production process, involving reaction and purification steps, suffers from a low yield and intensive energy use. Hence, major improvements are needed to sustainably upgrade the furfural production process. In this study, the conventional furfural process based on a continuous stirred tank reactor and distillation columns was designed and optimized from an actual aqueous xylose solution via a biomass pretreatment step. Subsequently, a reactive distillation (RD) and extraction/distillation (ED) configuration was proposed for the reaction and purification steps, respectively, to improve the process efficiency. RD can remove furfural instantly from the reactive liquid phase and can separate heavy components from the raw furfural stream, while the ED configuration with toluene and butyl chloride used as extracting solvents can effectively separate furfural from a dilute aqueous stream. The results showed that the hybrid RD-ED process using a butyl chloride solvent saves up to 51.8% and 57.4% of the total investment costs and total annual costs, respectively, compared to the conventional process. Furthermore, environmental impacts were evaluated and compared for all structural alternatives.
Funder
the Ministry of Education
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference22 articles.
1. Top. Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas;Werpy,2004
2. Furfural and Derivatives;Hoydonckx,2000
3. Design and optimization of intensified biorefinery process for furfural production through a systematic procedure
4. The Chemistry and Technology of Furfural and Its Many By-Products;Zeitsch,2000
5. Overview of Biorefineries based on Co-Production of Furfural, Existing Concepts and Novel Developments
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献