A Data-Driven Machine Learning Algorithm for Predicting the Outcomes of NBA Games

Author:

Horvat Tomislav1ORCID,Job Josip2ORCID,Logozar Robert1ORCID,Livada Časlav2ORCID

Affiliation:

1. Department of Electrical Engineering, University North, 104. Brigade 3, 42000 Varazdin, Croatia, EU

2. Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia, EU

Abstract

We propose a new, data-driven model for the prediction of the outcomes of NBA and possibly other basketball league games by using machine learning methods. The paper starts with a strict mathematical formulation of the basketball statistical quantities and the performance indicators derived from them. The backbone of our model is the extended team efficiency index, which consists of two asymmetric parts: (i) the team efficiency index, generally based on some individual efficiency index—in our case, the NBA player efficiency index, and (ii) the comparing part, in which the observed team is rewarded for every selected feature in which it outperforms its rival. Based on the average of the past extended indices, the predicted extended indices are calculated symmetrically for both teams competing in the observed future game. The relative value of those indices defines the win function, which predicts the game outcome. The prediction model includes the concept of the optimal time window (OTW) for the training data. The training datasets were extracted from maximally four and the testing datasets from maximally two of the five consecutive observed NBA seasons (2013/2014–2017/2018). The model uses basic, derived, advanced, and league-wise basketball game elements as its features, whose preparation and extraction were briefly discussed. The proposed model was tested for several choices of the training and testing sets’ seasons, without and with OTWs. The average obtained prediction accuracy is around 66%, and the maximal obtained accuracy is around 78%. This is satisfactory and in the range of better results in the works of other authors.

Funder

University North and Ministry of Science and Education, Republic of Croatia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Optimization Model to Predict Fantasy Basketball Teams;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

2. The Big Three: A Practical Framework for Designing Decision Support Systems in Sports and an Application for Basketball;Communications in Computer and Information Science;2024

3. The Rating of Basketball Players' Competitive Performance Based on RBF-EVA Method;International Journal of Information Technology and Web Engineering;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3